(0) Obligation:
Runtime Complexity TRS:
The TRS R consists of the following rules:
and(true, X) → activate(X)
and(false, Y) → false
if(true, X, Y) → activate(X)
if(false, X, Y) → activate(Y)
add(0, X) → activate(X)
add(s(X), Y) → s(n__add(activate(X), activate(Y)))
first(0, X) → nil
first(s(X), cons(Y, Z)) → cons(activate(Y), n__first(activate(X), activate(Z)))
from(X) → cons(activate(X), n__from(n__s(activate(X))))
add(X1, X2) → n__add(X1, X2)
first(X1, X2) → n__first(X1, X2)
from(X) → n__from(X)
s(X) → n__s(X)
activate(n__add(X1, X2)) → add(activate(X1), X2)
activate(n__first(X1, X2)) → first(activate(X1), activate(X2))
activate(n__from(X)) → from(X)
activate(n__s(X)) → s(X)
activate(X) → X
Rewrite Strategy: FULL
(1) DecreasingLoopProof (EQUIVALENT transformation)
The following loop(s) give(s) rise to the lower bound Ω(2n):
The rewrite sequence
from(n__from(X7207_3)) →+ cons(from(X7207_3), n__from(n__s(from(X7207_3))))
gives rise to a decreasing loop by considering the right hand sides subterm at position [0].
The pumping substitution is [X7207_3 / n__from(X7207_3)].
The result substitution is [ ].
The rewrite sequence
from(n__from(X7207_3)) →+ cons(from(X7207_3), n__from(n__s(from(X7207_3))))
gives rise to a decreasing loop by considering the right hand sides subterm at position [1,0,0].
The pumping substitution is [X7207_3 / n__from(X7207_3)].
The result substitution is [ ].
(2) BOUNDS(2^n, INF)